Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Elife ; 132024 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-38192202

RESUMEN

Animal songs can change within and between populations as the result of different evolutionary processes. When these processes include cultural transmission, the social learning of information or behaviours from conspecifics, songs can undergo rapid evolutions because cultural novelties can emerge more frequently than genetic mutations. Understanding these song variations over large temporal and spatial scales can provide insights into the patterns, drivers and limits of song evolution that can ultimately inform on the species' capacity to adapt to rapidly changing acoustic environments. Here, we analysed changes in fin whale (Balaenoptera physalus) songs recorded over two decades across the central and eastern North Atlantic Ocean. We document a rapid replacement of song INIs (inter-note intervals) over just four singing seasons, that co-occurred with hybrid songs (with both INIs), and a clear geographic gradient in the occurrence of different song INIs during the transition period. We also found gradual changes in INIs and note frequencies over more than a decade with fin whales adopting song changes. These results provide evidence of vocal learning in fin whales and reveal patterns of song evolution that raise questions on the limits of song variation in this species.


Asunto(s)
Ballena de Aleta , Animales , Acústica , Océano Atlántico , Mutación , Estaciones del Año
2.
J Acoust Soc Am ; 152(4): 2277, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36319244

RESUMEN

A single-hydrophone ocean glider was deployed within a cabled hydrophone array to demonstrate a framework for estimating population density of fin whales (Balaenoptera physalus) from a passive acoustic glider. The array was used to estimate tracks of acoustically active whales. These tracks became detection trials to model the detection function for glider-recorded 360-s windows containing fin whale 20-Hz pulses using a generalized additive model. Detection probability was dependent on both horizontal distance and low-frequency glider flow noise. At the median 40-Hz spectral level of 97 dB re 1 µPa2/Hz, detection probability was near one at horizontal distance zero with an effective detection radius of 17.1 km [coefficient of variation (CV) = 0.13]. Using estimates of acoustic availability and acoustically active group size from tagged and tracked fin whales, respectively, density of fin whales was estimated as 1.8 whales per 1000 km2 (CV = 0.55). A plot sampling density estimate for the same area and time, estimated from array data alone, was 1.3 whales per 1000 km2 (CV = 0.51). While the presented density estimates are from a small demonstration experiment and should be used with caution, the framework presented here advances our understanding of the potential use of gliders for cetacean density estimation.


Asunto(s)
Ballena de Aleta , Animales , Cetáceos , Probabilidad , Acústica , Aeronaves , Vocalización Animal
3.
JASA Express Lett ; 1(1): 011203, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36154092

RESUMEN

This Letter proposes a frequency scaling for processing, storing, and sharing high-bandwidth, passive acoustic spectral data that optimizes data volume while maintaining reasonable data resolution. The format is a hybrid that uses 1 Hz resolution up to 455 Hz and millidecade frequency bands above 455 Hz. This hybrid is appropriate for many types of soundscape analysis, including detecting different types of soundscapes and regulatory applications like computing weighted sound exposure levels. Hybrid millidecade files are compressed compared to the 1 Hz equivalent such that one research center could feasibly store data from hundreds of projects for sharing among researchers globally.

4.
JASA Express Lett ; 1(8): 081201, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-36154245

RESUMEN

In the original paper [JASA Express Lett. 1(1), 011203 (2021)], a method for processing, storing, and sharing high-bandwidth, passive acoustic spectral data that optimizes data volume while maintaining reasonable data resolution was proposed. The format was a hybrid that uses 1-Hz resolution up to 455 Hz and millidecade frequency bands above 455 Hz. The choice of 455 Hz was based on a method of computing the edge frequencies of millidecade bands that is not compatible with summing millidecades to decidecades. This has been corrected. The new transition frequency is the first frequency with a millidecade with greater than 1 Hz, 435 Hz.

5.
J Acoust Soc Am ; 148(2): 845, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32873009

RESUMEN

Passive acoustic monitoring of ocean soundscapes can provide information on ecosystem status for those tasked with protecting marine resources. In 2015, the National Oceanic and Atmospheric Administration (NOAA) established a long-term, continuous, low-frequency (10 Hz-2 kHz) passive acoustic monitoring site in the Cordell Bank National Marine Sanctuary (CBNMS), located offshore of the central United States of America (U.S.) west coast, near San Francisco, CA. The California Current flows southward along the coast in this area, supporting a diverse community of marine animals, including several baleen whale species. Acoustic data analysis revealed that both large vessels and vocalizing baleen whales contribute to the ambient soundscape of the CBNMS. Sound levels fluctuated by month with the highest levels in the fall and lowest levels in the summer. Throughout the year, very low-frequency (10-100 Hz) sound levels were most variable. Vessels and whales overlap in their contributions to ambient sound levels within this range, although vessel contributions were more omnipresent, while seasonal peaks were associated with vocalizing whales. This characterization of low-frequency ambient sound levels in the CBNMS establishes initial baselines for an important component of this site's underwater soundscape. Standardized monitoring of soundscapes directly supports NOAA's ability to evaluate and report on conditions within national marine sanctuaries.


Asunto(s)
Acústica , Ecosistema , Animales , Océanos y Mares , Estaciones del Año , Ballenas
6.
Glob Chang Biol ; 26(9): 4812-4840, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32450009

RESUMEN

Six baleen whale species are found in the temperate western North Atlantic Ocean, with limited information existing on the distribution and movement patterns for most. There is mounting evidence of distributional shifts in many species, including marine mammals, likely because of climate-driven changes in ocean temperature and circulation. Previous acoustic studies examined the occurrence of minke (Balaenoptera acutorostrata) and North Atlantic right whales (NARW; Eubalaena glacialis). This study assesses the acoustic presence of humpback (Megaptera novaeangliae), sei (B. borealis), fin (B. physalus), and blue whales (B. musculus) over a decade, based on daily detections of their vocalizations. Data collected from 2004 to 2014 on 281 bottom-mounted recorders, totaling 35,033 days, were processed using automated detection software and screened for each species' presence. A published study on NARW acoustics revealed significant changes in occurrence patterns between the periods of 2004-2010 and 2011-2014; therefore, these same time periods were examined here. All four species were present from the Southeast United States to Greenland; humpback whales were also present in the Caribbean. All species occurred throughout all regions in the winter, suggesting that baleen whales are widely distributed during these months. Each of the species showed significant changes in acoustic occurrence after 2010. Similar to NARWs, sei whales had higher acoustic occurrence in mid-Atlantic regions after 2010. Fin, blue, and sei whales were more frequently detected in the northern latitudes of the study area after 2010. Despite this general northward shift, all four species were detected less on the Scotian Shelf area after 2010, matching documented shifts in prey availability in this region. A decade of acoustic observations have shown important distributional changes over the range of baleen whales, mirroring known climatic shifts and identifying new habitats that will require further protection from anthropogenic threats like fixed fishing gear, shipping, and noise pollution.


Asunto(s)
Acústica , Animales , Océano Atlántico , Región del Caribe , Groenlandia , Sudeste de Estados Unidos
7.
J Acoust Soc Am ; 147(3): 1842, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-32237857

RESUMEN

In 2009-2014, autonomous hydrophones were deployed on established long-term moorings in the Fram Strait and Greenland Sea to record multi-year, seasonal occurrence of vocalizing cetaceans. Sei whales have rarely been observed north of ∼72°N, yet there was acoustic evidence of sei whale presence in the Fram Strait for several months during all five years of the study. More sei whale calls were recorded at the easternmost moorings in the Fram Strait, likely because of the presence of warm Atlantic water and a strong front concentrating prey in this area. Sei whale vocalizations were not recorded at the Greenland Sea 2009-2010 mooring, either because this area is not part of the northward migratory path of sei whales or because oceanographic conditions were not suitable for foraging. No clear relationship between whale presence and water temperature data collected coincident with acoustic data was observed, but decadal time series of water temperature data collected in the eastern Fram Strait by others exhibit a warming trend, which may make conditions suitable for sei whales. Continued monitoring of the region will be required to determine if the presence of sei whales in these polar waters is ephemeral or a common occurrence.

8.
J Acoust Soc Am ; 147(2): 961, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-32113295

RESUMEN

Acoustically equipped deep-water mobile autonomous platforms can be used to survey for marine mammals over intermediate spatiotemporal scales. Direct comparisons to fixed recorders are necessary to evaluate these tools as passive acoustic monitoring platforms. One glider and two drifting deep-water floats were simultaneously deployed within a deep-water cabled hydrophone array to quantitatively assess their survey capabilities. The glider was able to follow a pre-defined track while float movement was somewhat unpredictable. Fin whale (Balaenoptera physalus) 20 Hz pulses were recorded by all hydrophones throughout the two-week deployment. Calls were identified using a template detector, which performed similarly across recorder types. The glider data contained up to 78% fewer detections per hour due to increased low-frequency flow noise present during glider descents. The glider performed comparably to the floats and fixed recorders at coarser temporal scales; hourly and daily presence of detections did not vary by recorder type. Flow noise was related to glider speed through water and dive state. Glider speeds through water of 25 cm/s or less are suggested to minimize flow noise and the importance of glider ballasting, detector characterization, and normalization by effort when interpreting glider-collected data and applying it to marine mammal density estimation are discussed.

9.
Sci Rep ; 8(1): 13186, 2018 09 27.
Artículo en Inglés | MEDLINE | ID: mdl-30262835

RESUMEN

Investigating long term trends in acoustic communication is essential for understanding the role of sound in social species. Humpback whales are an acoustically plastic species known for producing rapidly-evolving song and a suite of non-song vocalizations ("calls") containing some call types that exhibit short-term stability. By comparing the earliest known acoustic recordings of humpback whales in Southeast Alaska (from the 1970's) with recordings collected in the 1990's, 2000's, and 2010's, we investigated the long-term repertoire stability of calls on Southeast Alaskan foraging grounds. Of the sixteen previously described humpback whale call types produced in Southeast Alaska, twelve were detected in both 1976 and 2012, indicating stability over a 36-year time period; eight call types were present in all four decades and every call type was present in at least three decades. We conclude that the conservation of call types at this temporal scale is indicative of multi-generational persistence and confirms that acoustic communication in humpback whales is comprised of some highly stable call elements in strong contrast to ever-changing song.


Asunto(s)
Yubarta/fisiología , Vocalización Animal/fisiología , Alaska , Animales
10.
PeerJ ; 6: e5365, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30083470

RESUMEN

BACKGROUND: Humpback whales (Megaptera novaeangliae) are a widespread, vocal baleen whale best known for producing song, a complex, repetitive, geographically distinct acoustic signal sung by males, predominantly in a breeding context. Humpback whales worldwide also produce non-song vocalizations ("calls") throughout their migratory range, some of which are stable across generations. METHODS: We looked for evidence that temporally stable call types are shared by two allopatric humpback whale populations while on their northern hemisphere foraging grounds in order to test the hypothesis that some calls, in strong contrast to song, are innate within the humpback whale acoustic repertoire. RESULTS: Despite being geographically and genetically distinct populations, humpback whales in Southeast Alaska (North Pacific Ocean) share at least five call types with conspecifics in Massachusetts Bay (North Atlantic Ocean). DISCUSSION: This study is the first to identify call types shared by allopatric populations, and provides evidence that some call types may be innate.

11.
J Acoust Soc Am ; 143(2): EL105, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29495694

RESUMEN

Humpback whales produce a wide range of low- to mid-frequency vocalizations throughout their migratory range. Non-song "calls" dominate this species' vocal repertoire while on high-latitude foraging grounds. The source levels of 426 humpback whale calls in four vocal classes were estimated using a four-element planar array deployed in Glacier Bay National Park and Preserve, Southeast Alaska. There was no significant difference in source levels between humpback whale vocal classes. The mean call source level was 137 dBRMS re 1 µPa @ 1 m in the bandwidth of the call (range 113-157 dBRMS re 1 µPa @ 1 m), where bandwidth is defined as the frequency range from the lowest to the highest frequency component of the call. These values represent a robust estimate of humpback whale source levels on foraging grounds and should append earlier estimates.

12.
Sci Rep ; 7(1): 13460, 2017 10 18.
Artículo en Inglés | MEDLINE | ID: mdl-29044130

RESUMEN

Given new distribution patterns of the endangered North Atlantic right whale (NARW; Eubalaena glacialis) population in recent years, an improved understanding of spatio-temporal movements are imperative for the conservation of this species. While so far visual data have provided most information on NARW movements, passive acoustic monitoring (PAM) was used in this study in order to better capture year-round NARW presence. This project used PAM data from 2004 to 2014 collected by 19 organizations throughout the western North Atlantic Ocean. Overall, data from 324 recorders (35,600 days) were processed and analyzed using a classification and detection system. Results highlight almost year-round habitat use of the western North Atlantic Ocean, with a decrease in detections in waters off Cape Hatteras, North Carolina in summer and fall. Data collected post 2010 showed an increased NARW presence in the mid-Atlantic region and a simultaneous decrease in the northern Gulf of Maine. In addition, NARWs were widely distributed across most regions throughout winter months. This study demonstrates that a large-scale analysis of PAM data provides significant value to understanding and tracking shifts in large whale movements over long time scales.


Asunto(s)
Acústica , Ballenas , Animales , Océano Atlántico , Geografía , Dinámica Poblacional , Análisis Espacial
13.
J Acoust Soc Am ; 140(3): EL274, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27914375

RESUMEN

In fall 2014 and spring 2015, passive acoustic data were collected via autonomous gliders east of Guam in an area that included the Mariana Trench Marine National Monument. A short (2-4 s), complex sound was recorded that features a ∼38 Hz moan with both harmonics and amplitude modulation, followed by broad-frequency metallic-sounding sweeps up to 7.5 kHz. This sound was recorded regularly during both fall and spring surveys. Aurally, the sound is quite unusual and most resembles the minke whale "Star Wars" call. It is likely this sound is biological and produced by a baleen whale.

14.
J Acoust Soc Am ; 140(3): 1894, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27914386

RESUMEN

Odontocete echolocation clicks have been used as a preferred cue for density estimation using single-sensor data sets, requiring estimation of detection probability as a function of range. Many such clicks can be very broadband in nature, with 10-dB bandwidths of 20-40 kHz or more. Detection distances are not readily obtained from single-sensor data. Here, the average detection probability is estimated in a Monte Carlo simulation using the passive sonar equation along with transmission loss calculations to estimate the signal-to-noise ratio (SNR) of tens of thousands of click realizations. Continuous-wave (CW) analysis, i.e., single-frequency analysis, is inherent to basic forms of the passive sonar equation. Using CW analysis with the click's center frequency while disregarding its bandwidth has been shown to introduce bias into detection probabilities and hence to density estimates. In this study, the effects of highly broadband clicks on density estimates are further examined. The usage of transmission loss as an appropriate measure for calculating click SNR is also discussed. The main contributions from this research are (1) an alternative approach to estimate the average probability of detection of broadband clicks, and (2) understanding the effects of multipath clicks on population density estimates.

15.
PLoS One ; 10(4): e0123425, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25875205

RESUMEN

Arrays of hydrophones were deployed within the Bransfield Strait and Scotia Sea (Antarctic Peninsula region) from 2005 to 2009 to record ambient ocean sound at frequencies of up to 125 and 500 Hz. Icequakes, which are broadband, short duration signals derived from fracturing of large free-floating icebergs, are a prominent feature of the ocean soundscape. Icequake activity peaks during austral summer and is minimum during winter, likely following freeze-thaw cycles. Iceberg grounding and rapid disintegration also releases significant acoustic energy, equivalent to large-scale geophysical events. Overall ambient sound levels can be as much as ~10-20 dB higher in the open, deep ocean of the Scotia Sea compared to the relatively shallow Bransfield Strait. Noise levels become lowest during the austral winter, as sea-ice cover suppresses wind and wave noise. Ambient noise levels are highest during austral spring and summer, as surface noise, ice cracking and biological activity intensifies. Vocalizations of blue (Balaenoptera musculus) and fin (B. physalus) whales also dominate the long-term spectra records in the 15-28 and 89 Hz bands. Blue whale call energy is a maximum during austral summer-fall in the Drake Passage and Bransfield Strait when ambient noise levels are a maximum and sea-ice cover is a minimum. Fin whale vocalizations were also most common during austral summer-early fall months in both the Bransfield Strait and Scotia Sea. The hydrophone data overall do not show sustained anthropogenic sources (ships and airguns), likely due to low coastal traffic and the typically rough weather and sea conditions of the Southern Ocean.


Asunto(s)
Sonido , Animales , Regiones Antárticas , Balaenoptera/fisiología , Ballena de Aleta/fisiología , Ruido , Océanos y Mares , Espectrografía del Sonido , Vocalización Animal
16.
J Acoust Soc Am ; 137(1): 1-10, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25618033

RESUMEN

On low-latitude breeding grounds, humpback whales produce complex and highly stereotyped songs as well as a range of non-song sounds associated with breeding behaviors. While on their Southeast Alaskan foraging grounds, humpback whales produce a range of previously unclassified non-song vocalizations. This study investigates the vocal repertoire of Southeast Alaskan humpback whales from a sample of 299 non-song vocalizations collected over a 3-month period on foraging grounds in Frederick Sound, Southeast Alaska. Three classification systems were used, including aural spectrogram analysis, statistical cluster analysis, and discriminant function analysis, to describe and classify vocalizations. A hierarchical acoustic structure was identified; vocalizations were classified into 16 individual call types nested within four vocal classes. The combined classification method shows promise for identifying variability in call stereotypy between vocal groupings and is recommended for future classification of broad vocal repertoires.


Asunto(s)
Yubarta/fisiología , Vocalización Animal/clasificación , Animales , Regiones Árticas , Análisis por Conglomerados , Análisis Discriminante , Conducta Alimentaria/fisiología , Espectrografía del Sonido , Especificidad de la Especie , Conducta Estereotipada/fisiología , Vocalización Animal/fisiología
17.
J Mammal ; 96(3): 603-610, 2015 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-26937046

RESUMEN

We examined recordings from a 15-month (May 2009-July 2010) continuous acoustic data set collected from a bottom-mounted passive acoustic recorder at a sample frequency of 6kHz off Portland, Victoria, Australia (38°33'01″S, 141°15'13″E) off southern Australia. Analysis revealed that calls from both subspecies were recorded at this site, and general additive modeling revealed that the number of calls varied significantly across seasons. Antarctic blue whales were detected more frequently from July to October 2009 and June to July 2010, corresponding to the suspected breeding season, while Australian blue whales were recorded more frequently from March to June 2010, coinciding with the feeding season. In both subspecies, the number of calls varied with time of day; Antarctic blue whale calls were more prevalent in the night to early morning, while Australian blue whale calls were detected more often from midday to early evening. Using passive acoustic monitoring, we show that each subspecies adopts different seasonal and daily call patterns which may be related to the ecological strategies of these subspecies. This study demonstrates the importance of passive acoustics in enabling us to understand and monitor subtle differences in the behavior and ecology of cryptic sympatric marine mammals.

18.
J Mammal ; 96(6): 1184-1193, 2015 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-26989263

RESUMEN

For effective species management, understanding population structure and distribution is critical. However, quantifying population structure is not always straightforward. Within the Southern Hemisphere, the blue whale (Balaenoptera musculus) complex is extremely diverse but difficult to study. Using automated detector methods, we identified "acoustic populations" of whales producing region-specific call types. We examined blue whale call types in passive acoustic data at sites spanning over 7,370 km across the southeast Indian Ocean and southwest Pacific Ocean (SWPO) from 2009 to 2012. In the absence of genetic resolution, these acoustic populations offer unique information about the blue whale population complex. We found that the Australian continent acts as a geographic boundary, separating Australia and New Zealand blue whale acoustic populations at the junction of the Indian and Pacific Ocean basins. We located blue whales in previously undocumented locations, including the far SWPO, in the Tasman Sea off the east coast of Australia, and along the Lau Basin near Tonga. Our understanding of population dynamics across this broad scale has significant implications to recovery and conservation management for this endangered species, at a regional and global scale.

19.
Mov Ecol ; 2(1): 24, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25709833

RESUMEN

BACKGROUND: Little is known about migration patterns and seasonal distribution away from coastal summer feeding habitats of many pelagic baleen whales. Recently, large-scale passive acoustic monitoring networks have become available to explore migration patterns and identify critical habitats of these species. North Atlantic minke whales (Balaenoptera acutorostrata) perform seasonal migrations between high latitude summer feeding and low latitude winter breeding grounds. While the distribution and abundance of the species has been studied across their summer range, data on migration and winter habitat are virtually missing. Acoustic recordings, from 16 different sites from across the North Atlantic, were analyzed to examine the seasonal and geographic variation in minke whale pulse train occurrence, infer information about migration routes and timing, and to identify possible winter habitats. RESULTS: Acoustic detections show that minke whales leave their winter grounds south of 30° N from March through early April. On their southward migration in autumn, minke whales leave waters north of 40° N from mid-October through early November. In the western North Atlantic spring migrants appear to track the warmer waters of the Gulf Stream along the continental shelf, while whales travel farther offshore in autumn. Abundant detections were found off the southeastern US and the Caribbean during winter. Minke whale pulse trains showed evidence of geographic variation, with longer pulse trains recorded south of 40° N. Very few pulse trains were recorded during summer in any of the datasets. CONCLUSION: This study highlights the feasibility of using acoustic monitoring networks to explore migration patterns of pelagic marine mammals. Results confirm the presence of minke whales off the southeastern US and the Caribbean during winter months. The absence of pulse train detections during summer suggests either that minke whales switch their vocal behaviour at this time of year, are absent from available recording sites or that variation in signal structure influenced automated detection. Alternatively, if pulse trains are produced in a reproductive context by males, these data may indicate their absence from the selected recording sites. Evidence of geographic variation in pulse train duration suggests different behavioural functions or use of these calls at different latitudes.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...